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“photo-realistic traditional Japanese onsen building engulfed in massive raging flames, fire consuming all, no escape, terrifying inferno, night”
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Fig. S1. Fire visual effects example. The prompt shown above is used for post-prompting. Our framework generates a visually consistent and temporally

smooth fire animation with camera motion, achieving high-impact VFX results.

We have attached a video named “SuppleVideo.mp4” as Supple-
mentary Material, containing generation results and comparisons
illustrated in the main paper and supplemental document.

A PSEUDO-CODE FOR SAG MODULE

ALGORITHM 1: Sparse Anchor-view Generation (SAG)

Input: HED edge-conditioned image diffusion model ¢;, total
denoising step T, replacement limit n,, reference image vy,
VAE encoder &r, VAE decoder Dy, identifier prompt p,
structural guidance of start view hy, structural guidance of
end view hp, optical flow fn—0,

Output: Anchor-view vy and vnr

Func. DiffusionSampling(es, An,P):
z: ~ N(0,1);
fort — Tto1ldo
L z¢ < DenosingOneStep(z;, hn, 2, €5 );
| return Dy(z;)
Func. SparseAppearanceGuidedSampling(e;,, AN, P, 00, fN—0):
zr ~ N(0,1);
N, m < BackwardWarp (09, fN—0);
20 « Er(v-N);
m < Downsample(m);
fort «— T to1do
z¢ < DenosingOneStep(z;, AN, ¢, €5 );
if T —t > n, then
L continue;
z; « ApplyNoiseSchedule (2o, #);
Z2r —mOZr+(1—m) Oz

| return Dy(z;)

€; < DistributionAlignment(ey, vyef, p) ; /* LORA training */
vy < DiffusionSampling (e, ho, p)

oN < SparseAppearanceGuidedSampling (€4, hn, P, %0, fN—0)
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B FIRE VISUAL EFFECTS (VFX)

Figure S1 illustrates a generation result animating a building en-
gulfed in flames, accompanied by camera motion. To produce this an-
imation, the anchor views are generated with post-prompting, where
fire-related descriptions are added to the unique identifier prompt.
The intermediate frames are then synthesized using our GGI mod-
ule. As shown in the supplemental video, the generated fire flows
dynamically with swirling and rising motion, maintaining temporal
smoothness and visual realism throughout the sequence. Achieving
this with traditional graphics pipelines requires not only the con-
struction of static scenes but also the integration of physically-based
fire simulation, which involves significant complexity and domain
expertise. In comparison, our framework provides a highly effective
and efficient solution for generating such challenging visual effects
with minimal overhead.

C DETAILS OF VISUAL COMPARISON BETWEEN
IMAGE AND VIDEO DIFFUSION MODELS

In this section, we provide additional details on the comparison
between image and video diffusion models, as presented in Figure
2 and Table 1 of the main paper. For the comparison, we select
text-conditioned generation models, as they serve as foundational
generative priors that are widely used in downstream tasks via
fine-tuning. This implies that their performance reflects an upper
bound on generative quality. To evaluate the models, we generate
1,000 prompts describing complex scenes using OpenAI’s Chat-
GPT, and use them to synthesize 1,000 images and 1,000 videos
via text-to-image and text-to-video diffusion models, respectively.
For qualitative comparison in Figure 2, we use the prompt ‘brick
townhouse with arched doorways overlooking the ocean’.

One might argue that the output of the video diffusion model in
Fig. 2b of the main paper exhibits lower visual quality compared
to generated videos commonly seen online, raising concerns about
the validity of the comparison. However, many high-quality online
videos are not generated by text-to-video models, but rather by
image-to-video models conditioned on high-quality first frames,
which gives them a significant advantage. Without such a strong
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(a) HED edge map

(b) Normal map

(c) Depth map [full] (d) Depth map [near]

Fig. S2. Visual comparison of structural guidance, including (a) HED edge
map, (b) normal map, (c) depth map covering the full range, and (d) depth
map focusing on near-range geometry.

visual prior, the per-frame visual quality of video generation sig-
nificantly degrades, especially for complex scenes. Moreover, even
when starting from a high-quality first frame, generating scenes
along a long camera trajectory eventually requires the model to
synthesize entirely new content. From that point, the generation
quality of video diffusion models often begins to degrade.

D TYPES OF STRUCTURAL GUIDANCE

Fig. S2 shows a visual comparison of structural guidance, including
the HED edge, normal, and depth maps. The normal map fails to
capture geometric structure in regions where perceptually adjacent
surfaces exhibit similar surface normals, often omitting important
structural cues (Fig. S2b). A ground-truth depth map, when visual-
ized over the full range, captures the global geometry of the scene
but suppresses local structures such as window details (Fig. S2c).
Conversely, a depth map that focuses on near-range structures bet-
ter preserves fine details, such as window edges, but discards distant
structures (Fig. S2d). As such, it is challenging to find a normaliza-
tion scheme that robustly represents all geometric structures from
depth maps rendered from 3D models, making it less effective for
structural guidance. In contrast, the edge map remains effective
across both global and local contexts, robustly preserving geometric
structure without these limitations (Fig. S2a).

E EDGE EXTRACTION FROM 3D GEOMETRY

As described in the main paper, we extract four types of edges to
acquire structural guidance h;: silhouette, object boundary, crease,
and intersection edges. In this section, we detail the extraction
process for each edge type and describe its utility. First, the silhouette
edge is a surface edge shared by one front-facing and one back-
facing polygon with respect to the viewing direction. Formally,
given a viewing direction vector v; from a camera pose p;, an edge
shared by two adjacent faces with normals n; and nj is classified
as a silhouette edge if sign({ni,v;)) # sign({nz,v;)). As shown
in Fig. S3(a), silhouette edges outline the primary contour of the
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(a) Silhouette edge (b) Crease edge

(c) Object boundary edge

(d) Intersection edge

Fig. S3. Visualization of edge types extracted during preprocessing.

object from a specific viewpoint. The crease edge is defined as one
where the angle between adjacent face normals exceeds a threshold
0, i.e., arccos({ny,nz)) > 6. As shown in Fig. S3(b), it captures
structurally important edges that are not part of the silhouette. We
set the crease angle threshold 0 to 40° in our experiments. The object
boundary edge depicts the topological boundary of open surfaces.
As illustrated in Fig. S3(c), they are useful when structure needs
to be guided using a simple planar surface. Additionally, a scene
typically consists of multiple mesh objects rather than a single one,
and when these objects intersect, structurally significant edges may
not be captured by the previously defined edge types. To address
this, we extract intersection edges to capture such cases, as shown in
Fig. S3(d). After extracting all four types of edges, we combine them
to form the final edge map. Unlike standard binary edge maps, the
structural guidance used during training is derived from HED edge
maps, which exhibit soft, brush-like edges. To reduce the domain
gap between the extracted edge map and the style of HED outputs,
we render the combined edge map as an image and pass it through
a pretrained HED edge detector [Xie and Tu 2015], resulting in the
final structural guidance h;.

F OPTICAL FLOW EXTRACTION

To compute correspondences between multi-view images, prior ap-
proaches [Burgert et al. 2025; Jin et al. 2025] adopt a depth-based
reprojection scheme. This technique estimates correspondences by
projecting pixels from one view to another using the predicted depth
map and camera pose. While simple and effective in many cases,
these methods inherently struggle to handle occlusions, as they
rely on a single depth value per pixel and do not explicitly model
visibility. In our setting, occlusions are common, particularly in
large-baseline correspondences such as fiy—. To handle occlusions
more effectively, we adopt a coordinate-map reprojection approach.
Fig. S5 illustrates the process of acquiring correspondences using
this method. As shown in the figure, this approach successfully han-
dles occluded regions even under large viewpoint changes, resulting
in more reliable correspondence maps.
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Fig. S5. Visualization of a projector-camera setup in a 3D scene (left) and
the corresponding pixel-wise correspondence map (right).

G DISCUSSION ON IP-ADAPTER

As noted in the limitation paragraph of the Introduction section,
our distribution alignment strategy results in a latency bottleneck
within the overall generation process. To address this, IP-Adapter [Ye
et al. 2023] could be a promising solution, since it introduces an
amortized inference method for distribution alignment and thus
significantly reduces the computational overhead. However, in our

unusual setting involving ControlNet [Zhang et al. 2023], applying
IP-Adapter proves incompatible, as shown in Fig. S4. Specifically,
assigning conventionally used weights to both adapters introduces
severe visual artifacts (red box). We speculate that this arises from
uncoordinated features being simultaneously injected by the two
independently trained adapters during inference. While moderate
weights for both adapters produce reasonable visual quality, the
resulting style deviates from the reference because the style imposed
by ControlNet weakens that provided by the IP-Adapter (orange
box).

H MULTI-VIEW CONSISTENCY AMONG ANCHOR
VIEWS

When generating a new anchor view, there may be cases where it
shares correspondences with non-adjacent anchor views. In such
cases, we identify overlapping regions with all previously generated
anchor views and apply warping to those regions, thereby ensuring
multi-view consistency with non-adjacent anchor views. A concrete
example is illustrated in Fig. S6. The camera starts indoors, passes
through an outdoor scene, and then returns to a location similar to
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i —
st anchor view (Indoor) 2" anchor view (Outdoor) 3 anchor view (Indoor)

Fig. S6. Multi-view consistency across three anchor views. The input geom-
etry is from TurboSquid (©Okhey).

Table S1. Quantitative comparison of video generation using the SAG mod-
ule alone and the combination of SAG and GGI modules.

Temporal Flickering T Motion Smoothness 7

SAG-only 89.67 94.59
SAG+GGI 94.54 98.51

Table S2. Quantitative comparison of anchor view generation with and
without the Sparse Appearance-guided sampling.

PSNRT SSIMT LPIPS |

w/o appearance guidance  8.746 0.276 1.801
w/ appearance guidance 17.878  0.629 1.725

the starting point. As shown in the results, the view consistency
between the first and third anchor views is effectively preserved.
However, as indicated by the orange boxes, new content may ap-
pear that was absent from the previous anchor views, owing to the
inherent randomness of diffusion models.

I  ADDITIONAL ABLATION RESULTS

Table S1 presents a quantitative comparison of video generation
using the SAG module alone versus the combination of SAG and GGI
modules. The evaluation employs two metrics, Temporal Flickering
and Motion Smoothness, which assess temporal motion quality
as introduced in VBench++ [Huang et al. 2024]. As shown in the
table, relying solely on the image diffusion model (SAG-only) fails
to preserve temporal consistency, leading to severe flickering and
lower motion quality. Table S2 presents a quantitative comparison
of anchor-view generation with and without Sparse Appearance-
guided sampling. For evaluation, the start views are warped to
the end views, and the generated end views are compared with the
warped images within the valid warping regions. As the table shows,
the absence of appearance guidance leads to a complete failure of
view consistency.

J COMPARISON WITH SDS-BASED METHOD

Fig. S7 illustrates a qualitative comparison between our method and
a state-of-the-art SDS-based approach, iRFDS [Yang et al. 2024]. To
incorporate geometric guidance, which is not natively supported in
iRFDS, we augment its optimization process with a depth Control-
Net!. As shown in the figure, iRFDS produces visually lower-quality
results, struggling to synthesize background regions such as the sky
and failing to accurately follow geometric guidance. Furthermore,

Lhttps://huggingface.co/InstantX/SD3- Controlnet-Depth
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“Cozy house on the grass”

(c) iRFDS

(a) Geometry

(b) Ours

Fig. S7. Qualitative comparison with iRFDS [Yang et al. 2024], a state-of-
the-art SDS-based approach.

(a) Ours "~ (b) StyleRF
Fig. S8. Qualitative comparison with StyleRF [Liu et al. 2023], a state-of-
the-art 3D style transfer approach.

it remains restricted to forward-facing view generation, making it
unsuitable for large-scale scene generation, unlike our approach.

K DISCUSSION ON 3D STYLE TRANSFER

3D style transfer methods [Chiang et al. 2022; Huang et al. 2021; Liu
etal. 2023] aim to convert a 3D representation of a realistic scene into
a stylized one based on an input style image. These methods could
be adapted to our task by training a NeRF with multi-view images
rendered from an untextured mesh and using a reference image for
style guidance. While conceptually plausible, they fail to produce re-
alistic scenes because they assume photorealistic multi-view inputs,
which are unavailable in our setting, and are inherently tailored
for artistic style transfer rather than photorealistic scene synthesis.
Fig. S8 illustrates this limitation by comparing with StyleRF [Liu et al.
2023], a representative style transfer method. As shown, StyleRF
produces grayish results that fail to reflect the reference style.

L DISCUSSION ON SAG MODULE ALTERNATIVES

Beyond our approach, alternative methods could be explored for
anchor view synthesis. One option is to apply multi-view diffusion
models [Gao et al. 2024; Zhou et al. 2025] to generate multi-view-
consistent anchor views. While this is plausible, it presents two
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major drawbacks. First, it requires high-cost training with large-
scale multi-view datasets to learn multi-view consistency capability.
Even with high-cost training, multi-view diffusion models must
learn to preserve multi-view consistency, which can lead to compro-
mised visual quality, as seen in video diffusion models. In contrast,
our approach fully harnesses the generative power of an image
diffusion model by integrating ControlNet for structural guidance
and distribution alignment with a style reference, achieving high
generation quality without compromising image quality or requir-
ing large-scale training. The other option is to apply inpainting
techniques [Lugmayr et al. 2022] to warped view vy_, . However,
distortions present in the warped input often persist in the final
output vy, leading to error-prone results. In addition, inpainting
methods are typically designed to fill relatively small missing re-
gions, and thus may struggle with large unobserved areas.

M 3D CAUSAL VAE DETAILS

CogVideoX employs a 3D causal VAE to encode video volumes into
a latent space. The term causal indicates that 3D convolution opera-
tions used during encoding do not access future frames. To ensure
this constraint, the VAE encodes the first video frame independently
and uses it as front padding during the encoding process. As a result,
the encoder input and output shapes are (1 +4K) X 3 X 8H X 8W
and (1+K) X 16 X H X W, respectively, where 1 + 4K is the num-
ber of input frames and 1 + K is the temporal length of the latent
representation. Here, 16, H, and W denote the channel, height, and
width dimensions in the latent space, respectively. Conversely, the
decoder follows the reverse dimensional mapping, transforming
latent representations of shape (1 + K) X 16 X H X W back to video
outputs of shape (1 + 4K) X 3 X 8H X 8W. In some scenarios, such
as image-to-video (I2V) generation, only a single reference frame
need to be encoded. To support this, the encoder defines a valid em-
bedding for a single image input &(x) by replicating it temporally:
&E(x) := &([x, x,x,x]), where x is a single image input.

When designing the interpolation model based on this VAE encod-
ing mechanism, a minor issue arises. As described in the main paper,
the endpoint guidance V is defined as [E(v), 0, - - - , 0, E(vn)]. Un-
like the first frame, decoding & (vnr) produces four output frames
due to the structure of the decoder. Since these frames are dupli-
cates, we remove the last three to obtain the final video sequence.
In the same vein, when structural guidance is provided, we append
the final frame four times to consider the encoding and decoding
mechanism. For example, the VAE encoding of structural guidance
is given by 8([’10, e, thls hN, hN, hN, hN])
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