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In this Supplemental Document, we present additional details, analysis, and
results. Specifically, we provide:

– Details on the network architecture,
– User study details,
– Additional discussion on training set,
– Additional ablations,
– Additional discussion on the color enhancement augmentation,
– Additional examples of the luminance replacement,
– Qualitative and quantitative comparisons,
– Additional uncurated examples,
– Additional examples of the multi-modal colorization, and
– Additional discussions on the limitations.

S1 Details on Network Architecture

Fig. S1 shows the detailed network architecture of BigColor. We designed our
encoder architecture by inverting the original BigGAN generator [2]. Our en-
coder consists of several ResBlocks, which are designed based on the ResBlock
of the generator with a couple of modifications. Specifically, while the generator
of BigGAN has non-local layers in a few ResBlocks, we exclude them and adopt
an additional drop-out layer at the end of each ResBlock for performance im-
provement. For the generator, we adopt the network architecture of the fine-scale
layers of the BigGAN generator. We initialize the generator with a pretrained
BigGAN model on the ImageNet-1K training set [5]. The random vector z fed
to the generator has a dimension of 68, which splits into four 17-dim vectors. We
concatenate each split vector with the class code c of dimension 128, resulting
in a 145-dim vector. Our code will be made public upon the acceptance of the
paper.
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Fig. S1. (a) Overview of BigColor architecture. Orange and blue boxes indicate en-
coder and generator blocks, respectively. We denote the output feature dimension at
each layer shown in the green boxes. The split operation divides the random code z
into four segments, which are then concatenated with the class code c. (b) Details of
E ResBlock3 shown in (a). (c) Details of G ResBlock3 shown in (a). The red dotted
box indicates that the number of feature channels is doubled or halved in these oper-
ations.
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Reference

Trap

Selection Box

Fig. S2. Our user study interface. Top row shows the colorization results of different
methods including a trap image denoted as a red box, which aims to filter out insincere
users. Bottom-center shows the input grayscale image, denoted as a blue box. The
selection box, denoted as green, provides an interface to choose the best one.

S2 User Study

We designed an Amazon-Mechanical-Turk interface for our user study as shown
in Fig. S2. For an input grayscale image, a user should select the most preferred
colorization image among the results with different methods. In total, there are
100 test samples. We shuffled the order of the results to remove any bias in the
sequence. We also intentionally added the input grayscale image as a trap option
in the colorization results for the sanity check of the user study. We excluded
all the subjects who selected the trap image at least one time. In this way, we
selected 33 valid participants out of 200 total subjects. Tab. S1 shows the full
preference scores of all of the participants and statistics that summarize the user
scores. The results show that the participants generally prefer to the results of
BigColor over the others.
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Table S1. The preference percentage to colorization methods for 33 participants in
the user study. Most subjects prefer the colorization result of BigColor to the other
methods. BigColor achieves the best percentage for all criterion: min, max, lower quar-
tile(Q1), higher quartile(Q3), mean,and median.

User CIC ChromaGAN InstColor DeOldify ColTran ToVivid BigColor

1 0.13 0.09 0.06 0.09 0.24 0.13 0.26
2 0.10 0.07 0.06 0.04 0.15 0.17 0.41
3 0.12 0.07 0.08 0.06 0.22 0.13 0.32
4 0.06 0.07 0.07 0.09 0.18 0.13 0.40
5 0.12 0.10 0.07 0.07 0.25 0.14 0.25
6 0.11 0.07 0.05 0.21 0.16 0.10 0.30
7 0.09 0.13 0.11 0.15 0.17 0.05 0.30
8 0.13 0.12 0.09 0.13 0.18 0.15 0.20
9 0.05 0.09 0.14 0.23 0.17 0.07 0.25
10 0.04 0.15 0.10 0.10 0.16 0.14 0.31
11 0.06 0.05 0.06 0.16 0.26 0.15 0.26
12 0.20 0.03 0.08 0.13 0.24 0.16 0.16
13 0.09 0.10 0.11 0.21 0.14 0.08 0.27
14 0.01 0.09 0.19 0.28 0.20 0.10 0.13
15 0.12 0.11 0.06 0.10 0.18 0.12 0.31
16 0.05 0.03 0.03 0.10 0.23 0.13 0.43
17 0.04 0.06 0.06 0.09 0.23 0.11 0.41
18 0.12 0.08 0.09 0.07 0.32 0.07 0.25
19 0.04 0.21 0.11 0.19 0.13 0.10 0.22
20 0.03 0.07 0.06 0.08 0.22 0.14 0.40
21 0.03 0.05 0.05 0.11 0.29 0.11 0.36
22 0.05 0.15 0.11 0.12 0.19 0.11 0.27
23 0.15 0.11 0.14 0.08 0.18 0.11 0.23
24 0.03 0.06 0.07 0.09 0.30 0.09 0.36
25 0.09 0.20 0.14 0.15 0.12 0.12 0.18
26 0.05 0.14 0.11 0.20 0.10 0.11 0.29
27 0.09 0.10 0.11 0.21 0.16 0.14 0.19
28 0.05 0.05 0.04 0.10 0.23 0.11 0.42
29 0.05 0.06 0.05 0.12 0.28 0.09 0.35
30 0.21 0.10 0.06 0.13 0.13 0.10 0.27
31 0.13 0.09 0.09 0.18 0.19 0.19 0.13
32 0.02 0.13 0.11 0.09 0.20 0.12 0.33
33 0.09 0.20 0.13 0.20 0.13 0.09 0.16

Max 0.21 0.15 0.14 0.28 0.32 0.19 0.43
Q3 0.12 0.12 0.11 0.18 0.23 0.14 0.35

Mean 0.08 0.10 0.09 0.13 0.20 0.12 0.28
Median 0.09 0.09 0.08 0.12 0.19 0.11 0.27

Q1 0.05 0.07 0.06 0.09 0.16 0.10 0.23
Min 0.01 0.03 0.03 0.04 0.10 0.05 0.13
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S3 Additional Assessment

S3.1 With and Without Less Colorful Training Images

In our main manuscript, we present results obtained using a training set where
we exclude 10% of images with low colorfulness score [3]. In this section, we
show an additional experimental result obtained from the full training set in-
cluding training images with low colorfulness scores. Tab. S2 shows that BigColor
trained with the full training set also outperforms the baseline methods, which
clearly proves the effectiveness of our approach. Also, BigColor trained without
images with low colorfulness scores slightly outperforms the full dataset-based
model, which shows that excluding less colorful images indeed helps improve the
colorization performance.

Table S2. Qualitative comparisons with previous automatic colorization methods and
BigColor models using the different training datasets. BigColor still achieves state-of-
the-art performance for all metrics without the filtered dataset.

Methods Colorful ↑ FID ↓ Classification ↑
CIC [9] 33.036 11.322 69.976

ChromaGAN [7] 26.266 8.209 70.374
InstColor [6] 25.507 7.890 68.422
DeOldify [1] 23.793 3.487 72.364
ColTran [4] 34.485 3.793 67.210
ToVivid [8] 35.128 4.078 73.816

BigColor (colorful dataset) 40.006 1.243 76.516
BigColor (full dataset) 39.774 1.473 76.320



6 G. Kim et al.

S3.2 Additional Ablations

We conduct additional ablation studies using 10% of the ImageNet training
images amounting to 100 image classes.

Fixing z Fixing the latent code z makes our color-synthesis process determin-
istic, resulting in the incapability of multi-modal synthesis capability. It reduces
the colorfulness score from 33.3 to 26.2, while the fidelity of colorization remains,
as shown in Tab. S3 and Fig. S3 (c). We conjecture that this is because fixing
z decreases the representation space of BigColor, which is originally spanned by
(f, c, z).

Learning without Luminance For the colorization task where an input image
already has the luminance components, it may be enough to estimate the color
components without the luminance. On the other hand, our approach estimates
RGB color values for an input image in order to effectively exploit the pretrained
GAN generator, which is trained in the RGB color space. To validate this, we
modify BigColor to synthesize only color components ab in the Lab color space.
Fig. S3 (d) and Tab. S3 shows that learning in the RGB space results in sig-
nificantly higher-quality results, indicating that training BigColor in the RGB
domain is essential to fully exploit the pretrained GAN prior.

Table S3. Quantitative results with the fixed z and without the luminance, demon-
strating their contributions to the final performance.

Methods Colorful ↑ FID ↓ Classification ↑
BigColor (fixed z) 26.169 5.787 81.44

BigColor (w/o luminance) 29.024 20.971 73.68

BigColor 33.299 5.714 81.44

(d) w/o luminance(a) Input (b) BigColor (c) Fixed z

Fig. S3. Qualitative results with (c) the fixed z and (d) without the luminance, given
(a) an input gray-scale image. (b) BigColor achieves the best qualitative result.
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S3.3 Impact of Color Augmentation

Our color augmentation strategy enhances the vividness and semantic correct-
ness of synthesized color images by altering the colors of the real images in the
training set. Specifically, our color augmentation applies to the real color images
in the training set, which is fed to the discriminator during training, only by
a small amount so that it does not introduce unwanted distortion to the color
distribution of real images. On the other hand, it still makes the colors of seman-
tically different regions in the training images more distinguishable during the
training phase. In consequence, it helps the generator learn to synthesize seman-
tically more correct and vivid colors. In this section, we qualitatively demonstrate
the effect of our color augmentation. For the quantitative evaluation, we refer
the readers to Tab. 5 in the main manuscript.

Fig. S4 shows a qualitative comparison of our color augmentation strategy
with two baselines: BigColor without our augmentation and BigColor with post
color processing. For the post color processing, we apply the same color color-
balancing method used in BigColor directly to the output of the generator.

The results of BigColor without the color augmentation and with the post
color processing (Fig. S4(b) and (c)) have similar colors while the results in (c)
are slightly more vivid. This implies that our color augmentation scheme does
not change the color distribution of the real images in the training set much.
Also, compared to our results in (d), the results without the color augmentation
have less vivid and semantically inaccurate colors, e.g., the dull colors of the
bricks and wood on the first and second rows, the red color on the accordion on
the fourth row, and the red human face on the last row. While the post processing
slightly boosts the color vividness, its results still have the exact same artifacts
as it is applied at the end of the colorization process. On the other hand, our
results have more vivid and semantically correct colors, showing that our color
augmentation scheme helps the generator synthesize more vivid and accurate
colors.
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(a) Input (b) BigColor (w/o Aug.) (d) BigColor (w/ Aug.)(c) BigColor (w/o Aug.)
+ post Aug.

Fig. S4. Our color augmentation scheme enhances the vividness and semantic cor-
rectness of colorization results. Note that color augmentation as post-processing fails
to achieve these improvements.
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(a) GT (b) Input (c) Generator output (d) Generator output
+ Luminance of input

Fig. S5. Effect of replacing luminance. We replace the luminance of generator output
with the luminance of the input image to boost high-frequency details on the output
of the generator. It is better seen in the enlarged images in the second and fourth rows.

S3.4 Luminance Replacement

BigColor brings the high-frequency spatial details of the input grayscale im-
age via luminance replacement. Fig. S5 shows that the luminance replacement
enables us to recover high-frequency spatial details while maintaining the high-
quality colors synthesized from our generator.
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S4 Additional Comparisons

In this section, we provide additional qualitative and quantitative comparisons
against recent colorization methods [8,1,9,7,6,4]. For the previous methods, we
used the official codes from the authors except for ToVivid [8], which does not
provide code at the time of our submission. For the results of ToVivid, we re-
quested the authors and obtained the results for our input images. We use the
stable version of DeOldify [1].

As ColTran [4] and ToVivid [8] can only deal with images of a specific size,
we conducted our experiments as follows. For all the other methods except for
ColTran and ToVivid, we resized the input images keeping the aspect ratio so
that the smaller between the width and height is 256. We then colorize the input
and crop the center regions to make the output resolution 256× 256. Regarding
ToVivid, we resized the input images to 256 × 256 ignoring the aspect ratio,
obtained their colorization results, and resized the results to recover the original
aspect ratios while keeping the smaller between the width and height still 256.
Then, we cropped the center regions of size 256 × 256. Regarding ColTran, we
resized the input images keeping the aspect ratio so that the smaller between
the width and height is 256, cropped the center regions of size 256 × 256, and
performed colorization.

Qualitative Comparisons We show additional qualitative comparisons in Fig.
S6, Fig. S7, and Fig. S8. BigColor outperforms all the compared methods for
challenging scenes with diverse semantics and structures.

Comparison on Challenging Images As described in the main manuscript,
we constructed a curated dataset consisting of 100 complex images based on the
number of people. Fig. S9 shows representative examples of simple images and
complex images with respect to the number of people. Note that the complex
images not only contain many people, but also have higher image complexity in
general. Tab. S4 and Fig. S10 show quantitative and qualitative comparisons of
different colorization methods. Again, BigColor achieves state-of-the-art quanti-
tative and qualitative performance.

Table S4. BigColor is robust for colorizing complex images compared to the previous
colorization methods, achieving the best performance in terms of FID and colorfulness
score.

Metric CIC ChromaGAN InstColor DeOldify ColTran ToVivid BigColor

FID ↓ 111.317 114.336 92.589 66.575 116.997 90.904 65.729
Colorful ↑ 31.080 24.789 22.534 24.303 35.065 36.198 42.077
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Fig. S6. Qualitative comparison of different colorization methods on the ImageNet1K
validation set [5].
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Fig. S7. Qualitative comparison of different colorization methods on the ImageNet1K
validation set [5].
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Fig. S8. Qualitative comparison of different colorization methods on the ImageNet1K
validation set [5].
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(a) Simple Images (b) Complex Images

Fig. S9. Our curated simple images and complex images in the ImageNet1K
dataset [5]. Although we assume the proportionality between the number of people
and image complexity, the complex images often contain various objects that make the
image more complicated and diverse.
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Fig. S10. Qualitative comparison of different colorization methods on complex images.
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S5 Additional Results

Uncurated Examples BigColor enables robust colorization for in-the-wild im-
ages. We show our colorization results on 100 uncurated images in Fig. S11 and
Fig. S12.

S5.1 Multi-modal Colorization

BigColor allows us to synthesize diverse colors for an input grayscale image.
Fig. S13 shows additional results of multi-modal colorization by using different
random codes z.

Fig. S11. Uncurated colorization results of BigColor, showing robust performance of
BigColor to various samples.
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Fig. S12. Uncurated colorization results of BigColor, showing robust performance of
BigColor to various samples.

Input Input

Input

InputInput

Input

Fig. S13. BigColor successfully produces multi-modal colorization results by sampling
different random codes z.
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S5.2 Limitations

Fig. S14 shows three failure cases of BigColor. First, BigColor may fail to col-
orize very small regions such as the ear in the first row in the figure. This is
because the spatial resolution of extracted feature f is small as 16× 16. Second,
BigColor may struggle with complex images that contain objects with signifi-
cantly different object classes such as toys and humans. Lastly, BigColor may
fail to handle input images considerably different from training images. Old
grayscale photographs could fall into such category as they often deviate from
the training-data grayscale distribution due to their unique film sensitivity and
chemical development recipes.

(a) Input (b) Colorization (c) Magnified patch of (a) (d) Magnified patch of (b)

Fig. S14. Limitation of BigColor. Top to bottom: missing tiny region, mixed image
classes, domain gap with training images.
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